Abstract

The interaction between an atom and the quantized electromagnetic field depends on the position of the atom. Then the atom experiences a force which is the minus gradient of this interaction. Through the Heisenberg equations of motion and the Born-Markov approximation, the mean and correlation of the force are obtained, showing that the center-of-mass motion of the atom is damped and diffused. This approach can be easily generalized to multi-level atoms, where the damping force and diffusion coefficients are just the weighted average of the contributions from all pairs of energy levels that have nonvanishing dipole elements. It is shown that these results are invariant under Galilean transformation, and in principle can be used to determine the velocity of the lab relative to the background radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call