Abstract

This paper is concerned with the derivation of a residual-based a posteriori error estimator and mesh-adaptation strategies for the space-time finite element approximation of parabolic problems with irregular data. Typical applications arise in the field of mathematical finance, where the Black–Scholes equation is used for modeling the pricing of European options. A conforming finite element discretization in space is combined with second-order time discretization by a damped Crank–Nicolson scheme for coping with data irregularities in the model. The a posteriori error analysis is developed within the general framework of the dual weighted residual method for sensitivity-based, goal-oriented error estimation and mesh optimization. In particular, the correct form of the dual problem with damping is considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.