Abstract

The interaction of CW fiber laser and monocrystal silicon is investigated experimentally and numerically. In the experiment, the damage morphologies are detected by a CCD and an optical microscope. The damaged silicon appears an evident molten pool within the laser spot and several cracks on the surface and slip damage, which indicate that the damage mechanism includes melting and thermal stress damage. The damage morphologies show two types of cracks including radial crack and circumferential crack. Otherwise, an obvious central hillock is found in the molten pool, which may be produced by the fluctuation of the thermal-stress filed and resolidification of the central molten silicon after irradiation. In the numerical simulation, a two-dimensional axisymmetric physical model is established based on the thermo elastic-plastic and classical heat transfer theory and Von Mises yield criterion. The simulation results indicate that the temperature and the stress in the irradiation center are always the highest on the specific condition, which may contribute to the occurrence of the central hillock. The gradient of hoop stress is bigger than the radial stress, thus, it can be inferred that the appearances of the radial cracks in the experiment were closely related to the hoop stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call