Abstract

<p>Preferential water flow and solute transport in agricultural systems affects not only the quality of groundwater but also the quality of surface waters like streams and lakes. This is due to the rapid transport of agrochemicals, immediately after application, through subsurface drainpipes and surface water. Experimental evidence attributes this to the occurrence of continuously connected pathways, connecting the soil surface directly with the drainpipes. We developed a physically-based model describing preferential flow and transport in biopores and implemented it in the agroecological model Daisy. The model simulates the often observed rapid transport of chemicals from   the upper soil layers to the drainpipes or to deeper layers of the soil matrix. Based on field investigations, biopores with specific characteristics can be parameterized as classes with different vertical and horizontal distributions. The model was tested against experimental data from a column experiment with an artificial biopore and showed good results in simulating preferential flow dynamics. We illustrate the performance of the new approach, by conducting five simulations assuming a two-dimensional simulation domain with different biopore parametrizations, from none to several different classes. The simulation results agreed with experimental observations reported in the literature, indicating rapid transport from the soil to the drainpipes. Furthermore, the different biopore parametrizations resulted in distinctly different leaching patterns, raising the expectation that biopore properties could be estimated or constrained based on observed leaching data and direct measurements.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.