Abstract
Recommender systems on online platforms are often accused of polarizing user attention and consumption. The authors examine this phenomenon using a quasi-experiment conducted by Zhihu, the largest online knowledge-sharing platform (or Q&A community) in China. Zhihu originally used a content-based filtering algorithm, which recommends content to users on the basis of the topics to which each user has subscribed. After more than a year, Zhihu moved to a social filtering algorithm, which recommends content with which users’ social connections are already engaged. The authors find that this algorithm change increased the creation of social ties by approximately 15% but decreased question subscriptions by 20% and answer contributions by 23%. The authors show that users’ increased social interests mainly involved following popular users, leading to a greater concentration of social interests on the platform. However, users’ topical interests became less concentrated, as popular topics received significantly fewer subscribers than unpopular topics. The authors explain these findings by exploring the underlying mechanism. They show that compared with content-based filtering algorithms, social filtering algorithms are more likely to expose general users to content consumed by their followees, who are more interested in niche topics than general users are.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.