Abstract
Daikon is an implementation of dynamic detection of likely invariants; that is, the Daikon invariant detector reports likely program invariants. An invariant is a property that holds at a certain point or points in a program; these are often used in assert statements, documentation, and formal specifications. Examples include being constant ( x = a ), non-zero ( x ≠ 0 ), being in a range ( a ≤ x ≤ b ), linear relationships ( y = a x + b ), ordering ( x ≤ y ), functions from a library ( x = fn ( y ) ), containment ( x ∈ y ), sortedness ( x is sorted ), and many more. Users can extend Daikon to check for additional invariants. Dynamic invariant detection runs a program, observes the values that the program computes, and then reports properties that were true over the observed executions. Dynamic invariant detection is a machine learning technique that can be applied to arbitrary data. Daikon can detect invariants in C, C++, Java, and Perl programs, and in record-structured data sources; it is easy to extend Daikon to other applications. Invariants can be useful in program understanding and a host of other applications. Daikon’s output has been used for generating test cases, predicting incompatibilities in component integration, automating theorem proving, repairing inconsistent data structures, and checking the validity of data streams, among other tasks. Daikon is freely available in source and binary form, along with extensive documentation, at http://pag.csail.mit.edu/daikon/.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.