Abstract

The excited D (1)Sigma(+) electronic state of (7)LiH has been observed up to near its dissociation limit by a pulsed optical-optical double resonance fluorescence depletion spectroscopic technique. An extensive vibronic calculation has been performed with a diabatic approach with purely potential couplings involving a set of eight diabatic states of (1)Sigma(+) symmetry, corresponding to seven neutral states and one ionic state. Twenty-six new vibrational levels have been observed. Both the derived vibrational energy spacings and the vibronic ones are similarly irregular. The observed spectral linewidths and vibronic resonance widths are found to vary similarly with increasing energy. Observed asymmetric spectral lineshapes may be attributed to the strong radial couplings between the discrete levels of the D (1)Sigma(+) electronic state and the continuum states of the C (1)Sigma(+) electronic state. The mutual agreement between the spectral results and the vibronic results demonstrates that the D (1)Sigma(+) electronic state of (7)LiH is better characterized by the vibronic approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.