Abstract
Due to their unique properties including cellular uptake and the delivery efficiency to biological systems, nanoparticles are used in various preclinical and clinical applications. The aim of this study was to investigate the toxicity impacts of zinc oxide nanoparticles (ZnO-NPs) on morphology and functionality of the rat's liver and spleen and illustrated its safe-therapeutic doses. The 28 female Swiss albino rats (180-220 g) and two human hepatocyte cell lines (HepG2 and HUH7) were designed as an in vivo and in vitro study, respectively. Samples were treated with certain doses of ZnO-NPs. The rat's liver morphology and functionality and apoptotic genes expression profile (Bax, Bcl-2, and P53) were analyzed to detect the cytotoxicity and antitumor impacts of ZnO-NPs, respectively. The results showed a positive significant association between the increasing doses of ZnO-NPs and alanine aminotransferase/aspartate aminotransferase values. Moreover, a meaningful correlation was detected between the rat's liver and spleen weight and ZnO-NPs doses. Furthermore, the histopathological analysis of rat's liver showed the individual cytotoxic properties of ZnO-NPs. Finally, the positive significant correlation was detected among the expression of Bax and P53 genes with ZnO-NPs. In addition, the negative correlation was demonstrated between the expression of Bcl-2 and ZnO-NPs. In general, in the current study, the antitumor effects of ZnO-NPs were confirmed by the enhancement of P53 and Bax genes expression profile, which are indicated the apoptotic induction in HUH7 cell line. Moreover, we introduced a safe-clinical ZnO-NPs dosage, have antitumor effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.