Abstract

The aromatic amino acids (AAAs) phenylalanine, tyrosine, and tryptophan are basic protein units and precursors of diverse specialized metabolites that are essential for plant growth. Despite their significance, the mechanisms that regulate AAA homeostasis remain elusive. Here, we identified a cytosolic aromatic aminotransferase, REVERSAL OF SAV3 PHENOTYPE 1 (VAS1), as a suppressor of arogenate dehydrogenase 2 (adh2) in Arabidopsis (Arabidopsis thaliana). Genetic and biochemical analyses determined that VAS1 uses AAAs as amino donors, leading to the formation of 3-carboxyphenylalanine and 3-carboxytyrosine. These pathways represent distinct routes for AAA metabolism that are unique to specific plant species. Furthermore, we show that VAS1 is responsible for cytosolic AAA biosynthesis, and its enzymatic activity can be inhibited by 3-carboxyphenylalanine. These findings provide valuable insights into the crucial role of VAS1 in producing 3-carboxy AAAs, notably via recycling of AAAs in the cytosol, which maintains AAA homeostasis and allows plants to effectively coordinate the complex metabolic and biosynthetic pathways of AAAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call