Abstract
Calcium, as a second messenger, has an important role in a variety of cellular functions. However, disruption of intracellular calcium homeostasis leads to cytotoxicity and cell death. Excessive calcium release from intracellular stores, via the calcium channel ryanodine receptor, contributes to cell damage. Dysfunction of calcium homeostasis is established in tissue culture and animal models of ischemia, hypoxia, seizure, trauma, anesthesia, and neurodegenerative diseases. Dantrolene, the primary drug to treat malignant hyperthermia, is a ryanodine receptor antagonist. Dantrolene inhibits abnormal calcium release from the sarco-endoplasmic reticulum, which is the primary intracellular calcium store. Dantrolene has been investigated widely for its possible cytoprotective effects against cell damage in different tissue culture or animal models of diseases involving cytotoxicity induced by disruption of intracellular calcium homeostasis in pathogenesis. In this review, we summarize the role of the disruption of intracellular calcium homeostasis on cell death, the pharmacologic and pharmacokinetic features of dantrolene, and the cytoprotective effects and potential application of dantrolene for the inhibition of cell damage in a wide variety of models of stress and disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.