Abstract

Drosophila neuroglian is a transmembrane glycoprotein that has strong structural and sequence homology to the vertebrate L1 gene family of cell adhesion molecules (Bieber, A.J., Snow, P.M., Hortsch, M., Patel, N.H., Jacobs, J.R., Traquina, Z.R., Schilling, J., and Goodman, C.S. (1989) Cell 59, 447-460. Two different neuroglian protein forms that are generated by a differential splicing process are expressed in a tissue-specific fashion by embryonic and larval cells (Hortsch, M., Bieber, A.J., Patel, N.H., and Goodman, C.S. (1990) Neuron 4, 697-709). The two neuroglial polypeptides differ only in their cytoplasmic domains. Both of these neuroglian species, when transfected into the expressed in Drosophila S2 cells, induce the calcium-independent, homophilic aggregation of transformed cells. A third artificial neuroglian protein form was constructed by substituting the neuroglian transmembrane segment and cytoplasmic domains with the glycosyl phosphatidylinositol attachment signal of the Drosophila fasciclin I protein. This cDNA construct generates a glycosyl phosphatidylinositol-anchored form of neuroglian, which retains the ability to induce homophilic cell aggregation when expressed in S2 cells, and was able to interact with both of the two naturally occurring neuroglian polypeptides. These results demonstrate that neuroglian mediates a calcium-independent, homophilic cell adhesion activity and that neither cytoplasmic neuroglian domains nor a direct interaction with cytoskeletal elements is essential for this property.

Highlights

Read more

Summary

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call