Abstract

We have used electron microscopy to examine freshly isolated Salmonella typhimurium and Escherichia coli basal flagellar fragments, purified without resort to extremes of pH or ionic strength. Such fragments contain the large bell-like basal structures visualized recently in freeze-substituted or fixed preparations. We have found mot (non-motile) mutants produced by lesions in fli genes (G, M, N) in which the bell structures do not coisolate with the flagellar basal body. The coisolation of the bell with the flagellar basal body was unaffected in strains lacking the genes for the motility-associated Mot proteins or for the Che family of proteins, which are necessary for chemotaxis. Proper assembly and interaction of the cytoplasmically located bell with the membrane-associated flagellar basal structures appears to be necessary for motor function. The FliG, FliM, and FliN proteins are thought to form a structural complex responsible for energization and switching of the flagellar motor. Our findings are consistent with the existence of such a complex and imply that it forms part of the flagellar bell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.