Abstract

Inflorescence architecture is important for rice (Oryza sativa) grain yield. The phytohormone cytokinin (CK) has been shown to regulate rice inflorescence development; however, the underlying mechanism mediated by CK perception is still unclear. Employing a forward genetic approach, we isolated an inactive variant of the CK receptor OHK4/OsHK4 gene named panicle length1, which shows decreased panicle size due to reduced inflorescence meristem (IM) activity. A 2-amino acid deletion in the long α-helix stalk of the sensory module of OHK4 impairs the homodimerization and ligand-binding capacity of the receptor, even though the residues do not touch the ligand-binding domain or the dimerization interface. This deletion impairs CK signaling that occurs through the type-B response regulator OsRR21, which acts downstream of OHK4 in controlling inflorescence size. Meanwhile, we found that IDEAL PLANT ARCHITECTURE1(IPA1)/WEALTHY FARMER'S PANICLE (WFP), encoding a positive regulator of IM development, acts downstream of CK signaling and is directly activated by OsRR21. Additionally, we revealed that IPA1/WFP directly binds to the OHK4 promoter and upregulates its expression through interactions with 2 TCP transcription factors, forming a positive feedback circuit. Altogether, we identified the OHK4-OsRR21-IPA1 regulatory module, providing important insights into the role of CK signaling in regulating rice inflorescence architecture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call