Abstract

BackgroundRetinal degenerative diseases are a group of conditions characterized by photoreceptor death and vision loss. Excessive inflammation and microglial activation contribute to the pathology of retinal degenerations and a major focus in the field is identifying more effective anti-inflammatory therapeutic strategies that promote photoreceptor survival. A major challenge to developing anti-inflammatory treatments is to selectively suppress detrimental inflammation while maintaining beneficial inflammatory responses. We recently demonstrated that endogenous levels of the IL-27 cytokine were upregulated in association with an experimental treatment that increased photoreceptor survival. IL-27 is a pleiotropic cytokine that regulates tissue reactions to infection, neuronal disease and tumors by inducing anti-apoptotic and anti-inflammatory genes and suppressing pro-inflammatory genes. IL-27 is neuroprotective in the brain, but its function during retinal degeneration has not been investigated. In this study, we investigated the effect of IL-27 in the rd10 mouse model of inherited photoreceptor degeneration.MethodsMale and female rd10 mice were randomly divided into experimental (IL-27) and control (saline) groups and intravitreally injected at age post-natal day (P) 18. Retina function was analyzed by electroretinograms (ERGs), visual acuity by optomotor assay, photoreceptor death by TdT-mediated dUTP nick-end labeling (TUNEL) assay, microglia/macrophage were detected by immunodetection of IBA1 and inflammatory mediators by cytoplex and QPCR analysis. The distribution of IL-27 in the retina was determined by immunohistochemistry on retina cross-sections and primary Muller glia cultures.ResultsWe demonstrate that recombinant IL-27 decreased photoreceptor death, increased retinal function and reduced inflammation in the rd10 mouse model of retinal degeneration. Furthermore, IL-27 injections led to lower levels of the pro-inflammatory proteins Ccl22, IL-18 and IL-12. IL-27 expression was localized to Muller glia and IL-27 receptors to microglia, which are key cell types that regulate photoreceptor survival.ConclusionOur results identify for the first time anti-inflammatory and neuroprotective activities of IL-27 in a genetic model of retinal degeneration. These findings provide new insight into the therapeutic potential of anti-inflammatory cytokines as a treatment for degenerative diseases of the retina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call