Abstract

The steroid hormone 20-hydroxyecdysone (20E) is essential for proper development and the timing of intermediary stage transitions in insects. As a result, there is intense interest in identifying and defining the roles of the enzymes and signaling pathways that regulate 20E production in the prothoracic gland (PG), the major endocrine organ of juvenile insect phases. Transcriptomics is one powerful tool that has been used to identify novel genes that are up- or down-regulated in the PG which may contribute to 20E regulation. Additional functional characterization of putative regulatory candidate genes typically involves qRT-PCR and/or RNAi mediated knockdown of the candidate mRNA in the PG to assess whether the gene’s expression shows temporal regulation in the PG and whether its expression is essential for proper 20E production and the correct timing of developmental transitions. While these methods have proved fruitful for identifying novel regulators of 20E production, characterizing the null phenotype of putative regulatory genes is the gold standard for assigning gene function since RNAi is known to generate various types of “off target” effects. Here we describe the genetic null mutant phenotype of the Drosophila melanogaster Cyp6t3 gene . Cyp6t3 was originally identified as a differentially regulated gene in a PG microarray screen and assigned a place in the “Black Box” step of the E biosynthetic pathway based on RNAi mediated knockdown phenotypes and rescue experiments involving feeding of various intermediate compounds of the E biosynthetic pathway. In contrast, we find that Crispr generated null mutations in Cyp6t3 are viable and have normal developmental timing. Therefore, we conclude that Cyp6t3 is not required for E production under typical lab growth conditions and therefore is not an obligate enzymatic component of the Black Box.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call