Abstract

Discovering tools to prevent cancer progression requires understanding the fundamental differences between normal and cancer cells. More than a decade ago, atomic force microscopy (AFM) revealed cancer cells' softer body compared to their healthy counterparts. Here, we investigated the mechanism underlying the softening of cancerous cells in comparison with their healthy counterparts based on AFM high resolution stiffness tomography and 3D confocal microscopy. We showed microtubules (MTs) network in invasive ductal carcinoma cell cytoskeleton is basally located and segmented for around 400 nm from the cell periphery. Additionally, the cytoskeleton scaffolding protein plectin exhibits a mis-localization from the cytoplasm to the surface of cells in the carcinoma which justifies the dissociation of the MT network from the cell's cortex. Furthermore, the assessment of MTs' persistence length using a worm-like-chain (WLC) model in high resolution AFM images showed lower persistence length of the single MTs in ductal carcinoma compared to that in the normal state. Overall, these tuned mechanics support the invasive cells to ascertain more flexibility under compressive forces in small deformations. These data provide new insights into the structural origins of cancer aids in progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.