Abstract

Bacterial products such as LPS are critical factors responsible for bone destruction. MMP-13, a member of the matrix metalloproteinase family, plays a critical role in the proteolytic degradation of extracellular matrix components, which includes collagen fibrils in the bone matrix. Montelukast is a selective cysteinyl leukotrienes receptor 1 (cysLT1R) antagonist used clinically for the treatment of asthma, as it reduces eosinophilic inflammation in airways. This study aims to explore the role of montelukast in regulating MMP-13 expression induced by LPS in osteoblasts. Our results indicate that LPS stimulated cysLT1R expression in mouse MC3T3-E1 osteoblasts in a dose- and time-dependent manner. Notably, LPS-induced up-regulation of MMP-13 was ameliorated by treatment with montelukast in a dose-dependent manner. Furthermore, treatment with montelukast stimulated the expression of SOCS3, an inhibitor of MMP-13. Silencing of SOCS3 abolished the inhibitory effects of montelukast on MMP-13 expression. Mechanistically, we found that montelukast suppressed LPS-induced nuclear translocation of NF-κB p65 as well as NF-κB transcriptional activity by inhibiting the phosphorylation and degradation of IκBα. These data suggest that montelukast can modulate inflammatory events in bone diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call