Abstract

A part of the "bouquet of wines" can be caused by the presence of odorous heterocycles produced by chemical reactions between S-amino acids and α-dicarbonyl compounds. Under wine ageing physic-chemical conditions (20 ± 2 °C, ethanol/water 12% v/v, pH 3.5), products of the diacetyl (DI) reaction with cysteine include a number of 1,3-N,S and 1-3-N,O 5 member heterocycles having methyl groups attached at C(2). The origin of this methyl-C(2) fragment was not clear; it could be supplied from DI or from cysteine. To explore this question, a parallel reaction was run in which DI was replaced by 3,4-hexanedione. With the C(1) and C(4) carbons of DI thus marked with methyl groups, the product distribution demonstrated that in the DI and cysteine reaction, both DI and cysteine provided the methyl-C(2) to varying degrees in the formation of 2-methylthiazole, 2-methyl-3-thiazoline and 2,4,5-trimethyloxazole but only cysteine supplied this fragment for 2-methylthiazolidine. The results are interpreted in terms of reaction paths appropriate for the mild conditions. These pathways shed light on the mechanisms leading from dicarbonyls to heterocyclic compounds. Like all the chemical pathways, they anticipate the impact of other compounds and physicochemical parameters on heterocyclic generations the generation of heterocyclics. They also suggest the presence of unexplored odorous compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.