Abstract

In this work, cysteine-induced BiOBr (cys-BiOBr) was prepared as a novel photoactive material with high photoelectric efficiency to construct a photochemical (PEC) biosensor for ultrasensitive detection of microRNA-155 (miRNA-155). Impressively, the photocurrent signal of cys-BiOBr showed an increase of 6 times compared to that of individual BiOBr, since the doping of S not only narrowed the band gap to enhance light absorption and accelerate carrier separation, but also augmented the surface oxygen vacancy concentration for preventing electron-hole pairs recombination, resulting in the obvious improvement of photoelectric efficiency. Furthermore, through exponential amplification reaction (EXPAR), a few miRNA-155 could be derived into abundant steady G-quadruplexes for immobilizing hemin to form the G-quadruplex/hemin complex for catalyzing H2O2 decomposition to significantly amplify photocurrent signal. The proposed PEC biosensor performed a wide range from 0.5 fM to 1 nM with a detection limit of 0.13 fM. This strategy provided a new method to prepare the highly efficient photoactive material for sensitive detection of biomolecules and exhibited enormous potential in early clinical diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call