Abstract

BackgroundUnderstanding the genetic and developmental origins of phenotypic novelty is central to the study of biological diversity. In this study we identify modifications to the expression of genes at four developmental stages that may underlie jaw morphological differences among three closely related species of pupfish (genus Cyprinodon) from San Salvador Island, Bahamas. Pupfishes on San Salvador Island are trophically differentiated and include two endemic species that have evolved jaw morphologies unlike that of any other species in the genus Cyprinodon.ResultsWe find that gene expression differs significantly across recently diverged species of pupfish. Genes such as Bmp4 and calmodulin, previously implicated in jaw diversification in African cichlid fishes and Galapagos finches, were not found to be differentially expressed among species of pupfish. Instead we find multiple growth factors and cytokine/chemokine genes to be differentially expressed among these pupfish taxa. These include both genes and pathways known to affect craniofacial development, such as Wnt signaling, as well as novel genes and pathways not previously implicated in craniofacial development. These data highlight both shared and potentially unique sources of jaw diversity in pupfish and those identified in other evolutionary model systems such as Galapagos finches and African cichlids.ConclusionsWe identify modifications to the expression of genes involved in Wnt signaling, Igf signaling, and the inflammation response as promising avenues for future research. Our project provides insight into the magnitude of gene expression changes contributing to the evolution of morphological novelties, such as jaw structure, in recently diverged pupfish species.

Highlights

  • Understanding the genetic and developmental origins of phenotypic novelty is central to the study of biological diversity

  • Identification of a set of genes that may contribute to jaw morphological variation in pupfishes To identify genes in our dataset that might be contributing to skull morphological variation, we found the intersection set of genes at each stage that were differentially expressed (DE; FDR ≤ 0.1 and log2 fold change ≥ 0.2) in all three possible comparisons to either the scale-biter or durophage, the two morphologically extreme species (Fig. 4a; Additional file 11: Figure S4)

  • Gene set enrichment analysis (GSEA) identified enrichment of neuronal pathways at embryonic stages highlighting to us that not every expression difference we identify is related to jaw morphology

Read more

Summary

Introduction

Understanding the genetic and developmental origins of phenotypic novelty is central to the study of biological diversity. In this study we identify modifications to the expression of genes at four developmental stages that may underlie jaw morphological differences among three closely related species of pupfish (genus Cyprinodon) from San Salvador Island, Bahamas. A central goal of evolutionary biology is to understand the origins of phenotypic diversity Critical to this task is elucidating how new phenotypic variation is produced during the early stages of species diversification. A major step is to both understand how and in what ways the genetic sources of phenotypic diversity in skull form vary across clades, as well as to identify additional genes and potential regulatory interactions that link gene expression to alterations in cell behavior that produce morphological variation

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.