Abstract

A short review is presented of the cylinder problem as a vehicle for developments in the theory of linear viscoelastic stress analysis. This is followed by the solution of the problem of a compressible, hollow circular viscoelastic cylinder encased in and bonded to an elastic cylindrical shell. The analysis includes the effects of arbitrarily varying angular velocity and internal pressure, and the inner surface may ablate at an arbitrary rate. Material properties are incorporated in the form of numerical values of the relaxation modulus in shear, and the bulk modulus. Results are presented and comparison made with previous solutions which deal with more restricted situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.