Abstract

Overexpression of mdr1-type P-glycoproteins (P-gps) is thought to contribute to primary chemotherapy resistance of untreated hepatocellular carcinoma. However, mechanisms of endogenous multidrug resistance 1 (mdr1) gene activation still remain unclear. Because recent studies have demonstrated overexpression of cyclooxygenase-2 (COX-2) in hepatocytes during early stages of hepatocarcinogenesis, we investigated whether the COX system, which catalyzes the rate-limiting step in prostaglandin synthesis, participates in mdr1 gene regulation. In the present study, primary rat hepatocyte cultures, exhibiting time-dependent mdr1b overexpression, demonstrated basal COX-2 and COX-1 mRNA expression and liberation of prostaglandin E2 (PGE2), indicative of an active COX-dependent arachidonic acid metabolism. PGE2 accumulation in culture supernatants was further enhanced by arachidonic acid (1μmol/L) and epidermal growth factor (EGF) (16 nmol/L). PGE2 and prostaglandin F2α (PGF2α) (3-6μg/mL), added directly to the culture medium, significantly up-regulated intrinsic mdr1b mRNA overexpression and mdr1-dependent transport activity. Up-regulation was maximal after 3 days of culture. Like prostaglandins, the COX substrate, arachidonic acid, also induced mdr1b gene expression. Apart from this, structurally different COX inhibitors (indomethacin, meloxicam, NS-398) mediated significant inhibition of time-dependent and EGF-induced mdr1b mRNA overexpression, resulting in enhanced intracellular accumulation of the mdr1 substrate, rhodamine 123 (Rho123). Thus, the present data support the conclusion that the release of prostaglandins through activation of the COX system participates in endogenous mdr1b gene regulation. COX-2 inhibition might constitute a new strategy to counteract primary mdr1-dependent chemotherapy resistance. (HEPATOLOGY 2002;35:579-588.)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.