Abstract

The function of cyclin D1 as a positive regulator of the cell cycle and proto-oncogene has been well established. Cyclin D1 elicits its pro-proliferative function early in G1 phase, through its ability to activate cyclin dependent kinase (CDK) 4 or 6. Active CDK4/6-cyclin D1 complexes phosphorylate substrates that are critical for modulating G1 to S phase progression, and in this manner promote cellular proliferation. Emerging data from a number of model systems revealed that cyclin D1 also holds multiple, kinase-independent cellular functions. First, cyclin D1 assists in sequestering CDK inhibitors (e.g. p27kip1), thus bolstering late G1 CDK activity. Second, cyclin D1 is known to bind and modulate the action of several transcription factors that hold significance in human cancers. Thus, cyclin D1 impinges on several distinct pathways that govern cancer cell proliferation. Although intragenic somatic mutation of cyclin D1 in human disease is rare, cyclin D1 gene translocation, amplification and/or overexpression are frequent events in selected tumor types. Additionally, a polymorphism in the cyclin D1 locus that may affect splicing has been implicated in increased cancer risk or poor outcome. Recent functional analyses of an established cyclin D1 splice variant, cyclin D1b, revealed that the cyclin D1b isoform harbors unique activities in cancer cells. Here, we review the literature implicating cyclin D1b as a mediator of aberrant cellular proliferation in cancer. The differential roles of cyclin D1 and the cyclin D1b splice variant in prostate cancer will be also be addressed, wherein divergent functions have been linked to altered proliferative control.

Highlights

  • Cyclin D1 is a focal point for integrating mitogenic stimulation with cellular proliferation [1,2]

  • Cyclin D1b is a poor catalyst of cyclin dependent kinase 4 (CDK4) activity in cell systems analyzed to date, suggesting that cyclin D1b utilizes non-canonical mechanisms to induce its oncogenic function

  • Cyclin D1b retains the ability of full-length cyclin D1 to modulate the action of some transcription factors, and this differential function may hold consequence in selected tumor types

Read more

Summary

Background

Cyclin D1 is a focal point for integrating mitogenic stimulation with cellular proliferation [1,2]. Collective analyses of cyclin D1b mediated AR regulation indicated that the altered AR regulatory capacity of cyclin D1b at least partially underpins its ability to induce cell cycle progression in this cell type (Figure 3B), and likely acts in concert with the heightened oncogenic capacity of cyclin D1b revealed in NIH3T3 studies These data suggest that cyclin D1b may hold multiple oncogenic functions in prostate cancer cells, and predict that the reliance of this tumor cell type on AR function could result in selective pressure to produce the cyclin D1b isoform. Given the relative poor efficacy of cyclin D1b in titering AR function, high cyclin D1b expression may render a mechanism whereby prostate cancer cells may promote CDK4 activity (and/or other pro-proliferative targets utilized by cyclin D1b) while concurrently evading mechanisms to modulate the AR dependent growth response. Additional investigation in this tumor type will be needed to segregate the relative impact of transcriptional versus cell cycle and/or oncogenic effects of cyclin D1b on tumor growth and progression

Conclusions and future considerations
Sherr CJ
45. Mittnacht S
84. Balk SP
Findings
90. Gelmann EP

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.