Abstract

Magnesium alloy components would be potentially subjected to cyclic loads resulting in a fatigue. The low cycle fatigue (LCF) is usually characterized by cyclic plastic deformation which is affected by strain rate. In this study, the LCF behavior of an AZ31B magnesium alloy was investigated at different cyclic frequencies (0.01Hz, 0.1Hz, 2.0Hz and 5.0Hz) and strain amplitudes (0.75%, 1.0%, 2.0% and 4.0%) under asymmetric loading. It was found that the alloy exhibits a cyclic hardening behavior at all selected strain amplitudes. However, the cyclic frequency exerts an evident effect on the cyclic hardening rate. As the frequency increases, the cyclic hardening rate decreases. In addition, the LCF life increases with increasing cyclic frequency. Based on the discussion of deformation mechanisms, it was confirmed that high strain rate favors {10−12}〈10–11〉 twinning–detwinning and inclines to restrict dislocation slip, resulting in the low cyclic hardening rate and the long LCF life at the high cyclic frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.