Abstract

Current ambient UV-B levels can significantly depress productivity in aquatic habitats, largely because UV-B inhibits several steps of photosynthesis, including the photooxidation of water catalyzed by photosystem II. We show that upon UV-B exposure the cyanobacterium Synechococcus sp. PCC 7942 rapidly changes the expression of a family of three psbA genes encoding photosystem II D1 proteins. In wild-type cells the psbAI gene is expressed constitutively, but strong accumulations of psbAII and psbAIII transcripts are induced within 15 min of moderate UV-B exposure (0.4 W/m2). This transcriptional response causes an exchange of two distinct photosystem II D1 proteins. D1:1 is encoded by psbAI, but on UV-B exposure, it is largely replaced by the alternate D1:2 form, encoded by both psbAII and psbAIII. The total content of D1 and other photosystem II reaction center protein, D2, remained unchanged throughout the UV exposure, as did the content and composition of the phycobilisome. Wild-type cells suffered only slight transient inhibition of photosystem II function under UV-B exposure. In marked contrast, under the same UV-B treatment, a mutant strain expressing only psbAI suffered severe (40%) and sustained inhibition of photosystem II function. Another mutant strain with constitutive expression of psbAII and psbAIII was almost completely resistant to the UV-B treatment, showing no inhibition of photosystem II function and only a slight drop in electron transport. In Synechococcus the rapid exchange of alternate D1 forms, therefore, accounts for much of the cellular resistance to UV-B inhibition of photosystem II activity and photosynthetic electron transport. This molecular plasticity may be an important element in community-level responses to UV-B, where susceptibility to UV-B inhibition of photosynthesis changes diurnally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call