Abstract
Copper chemical vapor deposition from Cu(hexafluoroacetylacetonate)trimethylvinylsilane (Cu(hfac)TMVS) was studied using a low pressure chemical vapor deposition system of a cold wall vertical reactor. The Cu films deposited using H2 as a carrier gas revealed no impurities in the films within the detection limits of Auger electron spectroscopy and x-ray photoelectron spectroscopy. Using hydrogen as a carrier gas, the hydrogen not only acts as a reducing agent, but also reacts with the residual fragment of precursor. As a result, using H2 as a carrier gas for Cu(hfac)TMVS resulted in Cu films of lower resistivity, denser microstructure and faster deposition rate than using Ar or N2 as the carrier gas. Moreover, we found that N2 plasma treatment on the substrate surface prior to Cu deposition increased the deposition rate of Cu films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.