Abstract

In vascular plants, leaf primordia prevent desiccation of the shoot apical meristem. Lacking leaves, the undifferentiated moss sporophyte apex is covered by the calyptra, a cap of maternal gametophyte tissue that is hypothesized to function in desiccation protection. Herein, we compare cuticle development on the calyptra and sporophyte to assess the calyptra's potential to protect the sporophyte from desiccation. As the first comprehensive study of moss sporophyte cuticle development, this research broadens our perspectives on cuticle development and evolution across embryophytes. Calyptrae and sporophytes at nine developmental stages were collected from a laboratory-grown population of the moss Funaria hygrometrica. Tissues were embedded, sectioned, then examined using transmission electron microscopy. Epidermal cells were measured for thickness of the cuticle layers, cell wall thickness, and lumen size. The calyptra cuticle develops precociously and reaches maturity before the sporophyte cuticle. Calyptrae are covered by a four-layered cuticle at all stages, whereas sporophyte cuticle maturation is delayed until sporangium formation. The development and thickening of the sporophyte cuticle occurs in an acropetal wave. A multilayered calyptra cuticle at the earliest developmental stages is consistent with its ability to protect the immature sporophyte from desiccation. Young sporophytes lack a complex cuticle and thus may require protection, whereas in older sporophytes a mature cuticle develops. The moss calyptra is not a vestigial structure, but rather the calyptra's role in preventing desiccation offers a functional explanation for calyptra retention during the 450 Myr of moss evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call