Abstract
A body submerged in active matter feels the swim pressure through a kinetic accumulation boundary layer on its surface. The boundary layer results from a balance between translational diffusion and advective swimming and occurs on the microscopic length scale . Here , DT is the Brownian translational diffusivity, τR is the reorientation time and l = U0τR is the swimmer's run length, with U0 the swim speed [Yan and Brady, J. Fluid. Mech., 2015, 785, R1]. In this work we analyze the swim pressure on arbitrary shaped bodies by including the effect of local shape curvature in the kinetic boundary layer. When δ ≪ L and l ≪ L, where L is the body size, the leading order effects of curvature on the swim pressure are found analytically to scale as JSλδ2/L, where JS is twice the (non-dimensional) mean curvature. Particle-tracking simulations and direct solutions to the Smoluchowski equation governing the probability distribution of the active particles show that λδ2/L is a universal scaling parameter not limited to the regime δ, l ≪ L. The net force exerted on the body by the swimmers is found to scale as Fnet/(n∞ksTsL2) = f(λδ2/L), where f(x) is a dimensionless function that is quadratic when x ≪ 1 and linear when x ∼ 1. Here, ksTs= ζU02τR/6 defines the 'activity' of the swimmers, with ζ the drag coefficient, and n∞ is the uniform number density of swimmers far from the body. We discuss the connection of this boundary layer to continuum mechanical descriptions of active matter and briefly present how to include hydrodynamics into this purely kinetic study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.