Abstract

The diffusion of single micron-sized Brownian square platelets on cylindrical surfaces with different radii of curvature in the presence of depletion attractions was studied experimentally by video microscopy. The translational motion of a square is found to be diffusive along the axial direction of the cylinder but sub-diffusive along the circumferential direction due to the confinement induced by gravity, while its rotational motion displays a sub-diffusive behavior due to the confinement induced by orientation-dependent depletion attractions. Such a confinement effect decreases as the radius of curvature increases and can be tuned both through surface curvatures and/or depletion attractions. Our work provides a new way to control the translational and rotational dynamics of anisotropic particles through curved surfaces in the presence of depletion attractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call