Abstract

AbstractShatter cones are a fracture phenomenon that is exclusively associated with shock metamorphism and has also been produced in the laboratory in several shock experiments. The occurrence of shatter cones is the only accepted meso‐ to macroscopic recognition criterion for impact structures. Shatter cones exhibit a number of geometric characteristics (orientation, apical angles, striation angles, sizes) that can be best described as varied, from case to case. Possible links between geometric properties with impact or crater parameters have remained controversial and the lack of understanding of the mechanism of formation of shatter cones does not offer a physical framework to discuss or understand them. A database of shatter cone occurrences has been produced for this introduction paper to the special issue of Meteoritics and Planetary Science on shatter cones. Distribution of shatter cones with respect to crater size and lithology suggests that shatter cones do not occur in impact craters less than a few kilometers in diameter, with a few, currently questionable exceptions. All pertinent hypotheses of formation are presented and discussed. Several may be discarded in light of the most recent observations. The branching fracture mechanism and the interference models proposed, respectively, by Sagy et al. (2002) and Baratoux and Melosh (2003) require further evaluation. New observations, experiments, or theoretical considerations presented in this special issue promise an important step forward, based on a renewed effort to resolve the enigmatic origin of these important features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.