Abstract

In this study, we investigated hepatitis C virus (HCV) molecular epidemiology and evolutionary dynamics. Both E1 and NS5B sequences were characterized in 379 of 433 patients in southern China and classified into five major subtypes: 1b in 256 patients, 6a in 67 patients, 2a in 29 patients, 3a in 14 patients, and 3b in 13 patients. Using the E1 sequences obtained, along with those from other studies using samples from China, we inferred the HCV epidemic history by means of coalescence strategies. Five Bayesian skyline plots (BSPs) were estimated for the five subtypes. They concurrently highlighted the rapid growth in the HCV-infected population size from 1993 to 2000, followed by an abrupt slowing. Although flanked on both sides by variable population sizes, the plots showed distinct patterns of rapid HCV growth. Coincidently, 1993 to 2000 was a period when contaminated blood transfusions were common in China due to a procedural error in an officially encouraged plasma campaign. The abrupt slowing in 1998 to 2000 corresponded to the central government outlawing paid blood donations in 1998. Using a parametric model, the HCV population growth rates were estimated during 1993 to 2000. It was revealed that the 6a rate was the highest, followed by those of 1b, 2a, 3b, and 3a. Because these rates differed significantly (P < 1e-9) from each other, they may help explain why 6a is increasingly prevalent in southern China and 1b is predominant nationwide. These rates are approximately 10-fold higher than those reported elsewhere. These findings suggested that during the plasma campaign, certain barriers to efficient viral transmission were removed, allowing wide HCV dissemination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call