Abstract

Hydrogen storage is an indispensable component of hydrogen-based fuel economy. Chemical hydrogen storage relies on the development of lightweight compounds which can deliver high weight percentage of H2 at moderate temperatures through dehydrogenation and can be recovered from the dehydrogenated mass by hydrogenation for reuse. In this feature article we primarily discuss the mechanistic underpinnings of the catalytic dehydrogenation of ammonia-borane, a potential candidate for hydrogen storage and the challenges associated with its regeneration from the dehydrogenated mass. Moreover, we highlight the mechanistic intricacies, viability, sustainability and unresolved issues of allied chemical hydrogen storage avenues such as the CH3OH-CO2 cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call