Abstract
This work investigates the effects of core–shell rubber (CSR) nanoparticles on the curing behaviour and thermo-mechanical properties of an epoxy using differential scanning calorimetry and dynamic mechanical thermal analysis approaches. Interaction between CSR nanoparticles and epoxy matrix is detected at a temperature of approximately 97°C in the curing process. This results in an increase in the glass transition temperature ( Tg) of the cured nanocomposites. Given the semi-dynamic curing schedule, the curing process of all the epoxy nanocomposites consists of an abrupt onset stage followed by a slow diffusion-controlled stage. Higher temperature is required to initiate the curing for the epoxy nanocomposites with higher loading of CSR nanoparticles. This is attributed to the physical changes caused by the addition of CSR nanoparticles, such as the increase in the viscosity and the reduction in the density of the reactive groups. The storage modulus of the epoxy decreases in the glassy region but remains constant in the rubbery region due to the incorporation of CSR nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.