Abstract

AbstractPaleointensity records are vital for understanding the Earth's evolution, but obtaining accurate paleointensity is a challenging task. The Shaw‐type method, a widely‐used paleointensity protocol, produces biased results occasionally despite strict selection criteria. By examining the relationships between paleointensities and rock magnetic parameters from a pseudo‐Tsunakawa‐Shaw experiment, we ascertain that changes in the ratio of thermal to anhysteretic remanent magnetization (R) are proportional to bias in paleointensity, especially prominent in samples with hundred‐nanometer‐scale magnetic grains, and thus proved to be the culprit for the bias. Furthermore, we develop a method exploiting the Linear regression of R with Diverse cut‐off coercivity intervals for estimating Shaw‐type paleointensities (LoRD‐Shaw). Combined with a curve fit technique for samples with “folding" phenomenon, the LoRD‐Shaw method yields high‐accuracy results in all tested samples, demonstrating its efficiency in mitigating paleointensity bias from thermal alteration. The new method will enhance acquisition of high‐precision paleointensities for constraining the geodynamo evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.