Abstract

Let \({s = \{s_{jk}\}_{0 \leq j+k \leq 3}}\) be a given complex-valued sequence. The cubic complex moment problem involves determining necessary and sufficient conditions for the existence of a positive Borel measure \({\sigma}\) on \({\mathbb{C}}\) (called a representing measure for s) such that \({s_{jk} = \int_{\mathbb{C}}\bar{z}^j z^k d\sigma(z)}\) for \({0 \leq j + k \leq 3}\). Put $$\Phi = \left(\begin{array}{lll} s_{00} & s_{01} & s_{10} \\s_{10} & s_{11} & s_{20} \\s_{01} & s_{02} & s_{11}\end{array}\right), \quad \Phi_z = \left(\begin{array}{lll}s_{01} & s_{02} & s_{11} \\s_{10} & s_{12} & s_{21} \\s_{02} & s_{03} & s_{12}\end{array} \right)\quad {\rm and}\quad\Phi_{\bar{z}} = (\Phi_z)^*.$$ If \({\Phi \succ 0}\), then the commutativity of \({\Phi^{-1} \Phi_z}\) and \({\Phi^{-1} \Phi_{\bar{z}}}\) is necessary and sufficient for the existence a 3-atomic representing measure for s. If \({\Phi^{-1} \Phi_z}\) and \({\Phi^{-1} \Phi_{\bar{z}}}\) do not commute, then we show that s has a 4-atomic representing measure. The proof is constructive in nature and yields a concrete parametrization of all 4-atomic representing measures of s. Consequently, given a set \({K \subseteq \mathbb{C}}\) necessary and sufficient conditions are obtained for s to have a 4-atomic representing measure \({\sigma}\) which satisfies \({{\rm supp} \sigma \cap K \neq \emptyset}\) or \({{\rm supp} \sigma \subseteq K}\). The cases when \({K = \overline{\mathbb{D}}}\) and \({K = \mathbb{T}}\) are considered in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.