Abstract
BackgroundDinoroseobacter shibae, a member of the Roseobacter clade abundant in marine environments, maintains morphological heterogeneity throughout growth, with small cells dividing by binary fission and large cells dividing by budding from one or both cell poles. This morphological heterogeneity is lost if the quorum sensing (QS) system is silenced, concurrent with a decreased expression of the CtrA phosphorelay, a regulatory system conserved in Alphaproteobacteria and the master regulator of the Caulobacter crescentus cell cycle. It consists of the sensor histidine kinase CckA, the phosphotransferase ChpT and the transcriptional regulator CtrA. Here we tested if the QS induced differentiation of D. shibae is mediated by the CtrA phosphorelay.ResultsMutants for ctrA, chpT and cckA showed almost homogeneous cell morphology and divided by binary fission. For ctrA and chpT, expression in trans on a plasmid caused the fraction of cells containing more than two chromosome equivalents to increase above wild-type level, indicating that gene copy number directly controls chromosome number. Transcriptome analysis revealed that CtrA is a master regulator for flagellar biosynthesis and has a great influence on the transition to stationary phase. Interestingly, the expression of the autoinducer synthase genes luxI2 and luxI3 was strongly reduced in all three mutants, resulting in loss of biosynthesis of acylated homoserine-lactones with C14 side-chain, but could be restored by expressing these genes in trans. Several phylogenetic clusters of Alphaproteobacteria revealed a CtrA binding site in the promoters of QS genes, including Roseobacters and Rhizobia.ConclusionsThe CtrA phosphorelay induces differentiation of a marine Roseobacter strain that is strikingly different from that of C. crescentus. Instead of a tightly regulated cell cycle and a switch between two morphotypes, the morphology and cell division of Dinoroseobacter shibae are highly heterogeneous. We discovered for the first time that the CtrA phosphorelay controls the biosynthesis of signaling molecules. Thus cell-cell communication and differentiation are interlinked in this organism. This may be a common strategy, since we found a similar genetic set-up in other species in the ecologically relevant group of Alphaproteobacteria. D. shibae will be a valuable model organism to study bacterial differentiation into pleomorphic cells.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-130) contains supplementary material, which is available to authorized users.
Highlights
Dinoroseobacter shibae, a member of the Roseobacter clade abundant in marine environments, maintains morphological heterogeneity throughout growth, with small cells dividing by binary fission and large cells dividing by budding from one or both cell poles
Bacteria have in the past been regarded as very simple organisms, dividing by binary fission into clones of identical daughter cells which can perform an unlimited number of cell divisions and were considered immortal in the absence of external killing events
Asymmetric cell division through growth from one cell pole has frequently been observed in Alphaproteobacteria and recognized as a possibility to create progeny with dissimilar age and cell fates [4]
Summary
Dinoroseobacter shibae, a member of the Roseobacter clade abundant in marine environments, maintains morphological heterogeneity throughout growth, with small cells dividing by binary fission and large cells dividing by budding from one or both cell poles This morphological heterogeneity is lost if the quorum sensing (QS) system is silenced, concurrent with a decreased expression of the CtrA phosphorelay, a regulatory system conserved in Alphaproteobacteria and the master regulator of the Caulobacter crescentus cell cycle. Bacteria have in the past been regarded as very simple organisms, dividing by binary fission into clones of identical daughter cells which can perform an unlimited number of cell divisions and were considered immortal in the absence of external killing events This view has since been abandoned and replaced by the concept of asymmetric cell division in most if not all bacterial species, resulting in progeny of different cellular composition, different history, and different fate [1]. Asymmetric cell division through growth from one cell pole has frequently been observed in Alphaproteobacteria and recognized as a possibility to create progeny with dissimilar age and cell fates [4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.