Abstract

Chemotherapeutic drugs that induce DNA damage have the potential to kill cancer cells, but DNA repair protects cells from damage‐induced cell death. Thus, eliminating DNA repair is a potential approach to overcome cell drug resistance. In this study, we observed that the gene expression of C‐terminal binding protein interacting protein (CTIP) was promoted by TNF‐α stimulation and prevented TNF‐α‐induced double‐strand breaks (DSBs) in the genomes of cervical cancer cells. The putative miR‐130b targeted site within 3′ untranslated region (UTR) of CTIP mRNA was identified through in silico analysis and confirmed based on experimental data. By targeting the CTIP gene, miR‐130b caused the accumulation of DSBs and accelerated cell apoptosis in combination with poly ADP ribose polymerase (PARP) inhibitors. Additionally, overexpression of the CTIP gene elevated cancer cell viability by promoting proliferation while miR‐130b antagonized CTIP‐stimulated cell reproduction. Consequently, miR‐130b destruction of DNA repair should be employed as a strategy to treat cervical cancer.Significance of the studyCervical cancer threatens the health of women all over the world. In this study, we observed that miR‐130b was able to cause the accumulation of DNA double‐strand breaks through suppressing the gene expression of C‐terminal binding protein interacting protein and to accelerate cell apoptosis by preventing DNA damage repairs in cervical cancer cells. As far as we know, the impact of miR‐130b on the DNA double‐strand break repair and on the cell apoptosis induced by the destruction of DNA repair in cervical cancer cells was firstly documented. It is reasonable to believe that miR‐130b destruction of DNA repair may be employed as a strategy to treat cervical cancer in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.