Abstract
The effects of subcellular localization on single-chain antibody (scFv) expression levels in transgenic tobacco was evaluated using an scFv construct of a model antibody possessing different targeting signals. For translocation into the secretory pathway a secretory signal sequence preceded the scFv gene (scFv-S). For cytosolic expression the scFv antibody gene lacked such a signal sequence (scFv-C). Also, both constructs were provided with the endoplasmic reticulum (ER) retention signal KDEL (scFv-SK and scFv-CK, respectively). The expression of the different scFv constructs in transgenic tobacco plants was controlled by a CaMV 35S promoter with double enhancer. The scFv-S and scFv-SK antibody genes reached expression levels of 0.01% and 1% of the total soluble protein, respectively. Surprisingly, scFv-CK transformants showed considerable expression of up to 0.2% whereas scFv-C transformants did not show any accumulation of the scFv antibody. The differences in protein expression levels could not be explained by the steady-state levels of the mRNAs. Transient expression assays with leaf protoplasts confirmed these expression levels observed in transgenic plants, although the expression level of the scFv-S construct was higher. Furthermore, these assays showed that both the secretory signal and the ER retention signal were recognized in the plant cells. The scFv-CK protein was located intracellularly, presumably in the cytosol. The increase in scFv protein stability in the presence of the KDEL retention signal is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.