Abstract

The native habitats of the ctenophore, Mnemiopsis, are temperate to subtropical estuaries along the Atlantic coast of North and South America, where it is found in an extremely wide range of environmental conditions (winter low and summer high temperatures of 2 and 32°C, respectively, and salinities of <2–38). In the early 1980s, it was accidentally introduced to the Black Sea, where it flourished and expanded into the Azov, Marmara, Mediterranean and Caspian Seas. We compile data showing that Mnemiopsis has high potentials of growth, reproduction and feeding that enable this species to be apredominant zooplanktivore in a wide variety of habitats; review the population distributions and dynamics of Mnemiopsis in U.S. waters and in the Black Sea region; and examine the effects of temperature and salinity, zooplankton availability and predator abundance on Mnemiopsis population size in both regions, and the effects of Mnemiopsis on zooplankton, ichthyoplankton and fish populations, focusing on Chesapeake Bay and the Black Sea. In both regions, Mnemiopsis populations are restricted by low winter temperatures <2°C). In native habitats, predators of Mnemiopsis often limit their populations, and zooplanktivorous fish are abundant and may compete with the ctenophores for food. By contrast, in the Black Sea region, no obvious predators of Mnemiopsis were present during the decade following introduction when the ctenophore populations flourished. Additionally, zooplanktivorous fish populations had been severely reduced by over fishing prior to the ctenophore outbreak. Thus, small populations of potential predators and competitors for food enabled Mnemiopsis populations to swell in the new habitats. In Chesapeake Bay, Mnemiopsis consumes substantial proportions of zooplankton daily, but may only noticeably reduce zooplankton populations when predators of Mnemiopsis are uncommon. Mnemiopsis also is an important predator of fish eggs in both locations. In the Black Sea, reductions in zooplankton, ichthyoplankton and zooplanktivorous fish populations have been attributed to Mnemiopsis. We conclude that the enormous impact of Mnemiopsis on the Black Sea ecosystem occurred because of the shortage of predators and competitors in the late 1980s and early 1990s. The appearance of the ctenophore, Beroe ovata, may promote the recovery of the Black Sea ecosystem from the effects of the Mnemiopsis invasion.KeywordsBeroeChesapeake Bayfishjellyfishpredationzooplankton

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call