Abstract
The industry in western Australia has committed to addressing their carbon emissions in response to the governments aspiration of net zero greenhouse gas emissions by 2050. Natural gas will play an important role in the transition to a fully renewable energy market but will require the geological storage of carbon dioxide to limit emissions and enable the production of blue hydrogen. Underground storage of energy in general (e.g. natural gas, hydrogen, compressed air) will be needed increasingly for providing options for temporary storage of energy from renewable resources and for energy export. Storage operations would need to provide adequate monitoring systems in compliance with yet to be defined regulations and to assure the public that potential leakage or induced seismicity could be confidently detected, managed and remediated. The In-Situ Laboratory in the southwest of western Australia was established in 2019 as a research field site to support low emissions technologies development and provides a unique field site for fluid injection experiments in a fault zone and testing of monitoring technologies between 400m depth and the ground surface. The site currently consists of three wells instrumented with fibre optics, pressure, temperature and electric resistivity sensors as well as downhole geophones. A controlled release of CO2 and various water injection tests have demonstrated the ability to detect pressure and temperature effects associated with fluid injection. Future experiments planned at the site will help in improving the sensitivity of monitoring technologies and could contribute to defining adequate monitoring requirements for carbon dioxide, hydrogen and other energy storage operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.