Abstract

We present a study of the crystallization process in liquid vanadium over a temperature range from 3000 K down to 1500 K using ab initio molecular dynamics simulations. Short-range order evolution during solidification is studied using various structural analysis methods. We show that the icosahedral-like short-range order is detected in the stable liquid phase and grows upon supercooling. The system undergoes a first-order phase transition (from a liquid to a solid state) at a temperature of about 1600 K. The crystal nucleation process is further studied using the time–temperature transformation mechanism by annealing the system at 1650 K. The nucleation is examined using bond-orientational order and density fluctuation analysis. Our finding is that various precursors appear in the region of high bond-orientational order with the majority having body-centered cubic (bcc)-like symmetry. This bcc-like region grows on annealing via thermal fluctuations. Our results reveal that the bond-orientational order precedes the density fluctuation, and is the main driving factor for nucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call