Abstract

A combination of neutron and X-ray diffraction has been used to structurally characterise the crystalline monolayer structures of all the alkanes with odd number of carbon atoms in their alkyl chains from pentane to pentadecane adsorbed on graphite. The structures of all the molecules investigated at submonolayer coverages are isomorphous with centred rectangular unit cells containing two molecules per cell in a parallel arrangement. This is a completely different structure from the ‘herringbone’ arrangement of molecules found for the shorter ‘even’ alkanes, such as hexane, octane and decane. The monolayers at sub-monolayer coverages are interpreted as uniaxial commensurate with the underlying graphite while those monolayers coexisting with the liquid, while structurally similar, are fully commensurate. The difference between the two structures is a uniaxial compression in the b-direction with the monolayers coexisting with the liquids significantly more dense than at submonolayer coverages. In the low coverage structures the ‘odd’ molecules have an all trans conformation with their extended axes parallel to the surface with the plane of the carbon skeleton also parallel to the graphite surface. At high coverages the carbon skeleton is no longer parallel to the graphite surface but significantly tilted. The longest alkanes, tridecane and pentadecane also show evidence of positional and/or rotational disorder at high coverages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.