Abstract

The tautomerase superfamily consists of three major families represented by 4-oxalocrotonate tautomerase (4-OT), 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI), and macrophage migration inhibitory factor (MIF). The members of this superfamily are structurally homologous proteins constructed from a simple beta-alpha-beta fold that share a key mechanistic feature; they use an amino-terminal proline, which has an unusually low pK(a), as the general base in a keto-enol tautomerization. Several new members of the 4-OT family have now been identified using PSI-BLAST and categorized into five subfamilies on the basis of multiple-sequence alignments and the conservation of key catalytic and structural residues. The members of subfamily 5, which includes a hypothetical protein designated YdcE from Escherichia coli, are predicted not to form hexamers. The crystal structure of YdcE has been determined to 1.35 A resolution and confirms that it is a dimer. In addition, YdcE complexed with (E)-2-fluoro-p-hydroxycinnamate, identified as a potent competitive inhibitor of this enzyme, as well as N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) and benzoate are also presented. These latter crystal structures reveal the location of the active site and suggest a mechanism for the observed YdcE-catalyzed tautomerization reaction. The dimeric arrangement of YdcE represents a new structure in the 4-OT family and demonstrates structural diversity within the 4-OT family not previously reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.