Abstract

The crystal structure of micro- and nanopowders of ZnS doped with different impurities was analyzed by the electron paramagnetic resonance (EPR) of Mn2+ and XRD methods. The powders of ZnS:Cu, ZnS:Mn, ZnS:Co, and ZnS:Eu with the particle sizes of 5–7 μm, 50–200 nm, 7–10 μm, and 5–7 nm, respectively, were studied. Manganese was incorporated in the crystal lattice of all the samples as uncontrolled impurity or by doping. The Mn2+ ions were used as EPR structural probes. It is found that the ZnS:Cu has the cubic structure, the ZnS:Mn has the hexagonal structure with a rhombic distortion, the ZnS:Co is the mixture of the cubic and hexagonal phases in the ratio of 1:10, and the ZnS:Eu has the cubic structure and a distorted cubic structure with stacking defects in the ratio 3:1. The EPR technique is shown to be a powerful tool in the determination of the crystal structure for mixed-polytype ZnS powders and powders with small nanoparticles. It allows observation of the stacking defects, which is revealed in the XRD spectra.

Highlights

  • The interest to zinc sulfide has recently increased due to the progress in the technologies that allow the obtaining of low-sized (LS) ZnS crystals on the scale from micrometer to a few nanometer

  • The experimental spectra were compared with a set of model Mn2+ electron paramagnetic resonance (EPR) spectra calculated for powders with the program [19]

  • The crystal structure of the low-sized ZnS powders was comparatively examined by the X-ray diffraction (XRD) and the Mn2+ EPR

Read more

Summary

Introduction

The interest to zinc sulfide has recently increased due to the progress in the technologies that allow the obtaining of low-sized (LS) ZnS crystals on the scale from micrometer to a few nanometer. LS ZnS demonstrates new properties that are interesting from the point of view of both fundamental and applied physics. These are the blue shift of the fundamental absorption band for the LS ZnS [1, 2], decrease of the zinc blende-to-wurtzite (cubic-to-hexagonal) phase transition temperature [3, 4], and increase of efficiency of the photoluminescence [5] and low-voltage cathodoluminescence [6]. XRD does not detect local distortions of the lattice, in particular, near to the impurities In these cases, the electron paramagnetic resonance (EPR) is more effective, especially, when paramagnetic centers with high spin serve as structure probes. Materials specially doped with manganese are often being of interest

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.