Abstract
RNase E functions as the rate-limiting enzyme in the global mRNA metabolism as well as in the maturation of functional RNAs. The endoribonuclease, binding to the PNPase trimer, the RhlB monomer, and the enolase dimer, assembles into an RNA degradosome necessary for effective RNA metabolism. The RNase E processing is found to be negatively regulated by the protein modulator RraA which appears to work by interacting with the non-catalytic region of the endoribonuclease and significantly reduce the interaction between RNase E and PNPase, RhlB and enolase of the RNA degradosome. Here we report the crystal structure of RraA from P. aeruginosa to a resolution of 2.0 Å. The overall architecture of RraA is very similar to other known RraAs, which are highly structurally conserved. Gel filtration and dynamic light scattering experiments suggest that the protein regulator is arranged as a hexamer, consistent with the crystal packing of "a dimer of trimer" arrangement. Structure and sequence conservation analysis suggests that the hexamer RraA contains six putative charged protein-protein interaction sites which may serve as binding sites for RNase E.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.