Abstract
Polyamines are essential in all branches of life. Biosynthesis of spermidine, one of the most ubiquitous polyamines, is catalyzed by spermidine synthase (SpeE). Although the function of this enzyme from Escherichia coli has been thoroughly characterised, its structural details remain unknown. Here, we report the crystal structure of E. coli SpeE and study its interaction with the ligands by isothermal titration calorimetry and computational modelling. SpeE consists of two domains - a small N-terminal beta-strand domain, and a C-terminal catalytic domain that adopts a canonical methyltransferase (MTase) Rossmann fold. The protein forms a dimer in the crystal and in solution. Structural comparison of E. coli SpeE to its homologs reveals that it has a large and unique substrate-binding cleft that may account for its lower amine substrate specificity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.