Abstract

AbstractThe atomic structure of ammoniojarosite,[(NH4)Fe3(SO4)2(OH)6], a = 7.3177(3) Å, c = 17.534(1) Å, space groupRm,Z= 3, has been solved using single-crystal X-ray diffraction (XRD) towR3.64% and R 1.4%. The atomic coordinates of the hydrogen atoms of the NH4group were located and it was found that the ammonium group has two different orientations with equal probability. Hydronium commonly substitutes into jarosite group mineral structures and samples in the ammoniojarosite–hydronium jarosite solid-solution series were synthesized and analysed using powder XRD and Rietveld refinement. Changes in unit-cell dimensions and bond lengths are noted across the solidsolution series. The end-member ammoniojarosite synthesized in this study has no hydronium substitution in theAsite and the unit-cell dimensions determined have a smaller a dimension and larger c dimension than previous studies. Two natural ammoniojarosite samples were analysed and shown to have similar unit-cell dimensions to the synthetic samples. Short-wave infrared and Fourier transform infrared spectra were collected for samples from the NH4–H3O jarosite solid-solution series and the differences between the end-members were significant. Both are useful tools for determining NH4content in jarosite group minerals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call