Abstract

The Socotra Island belongs to the southern rifted margin of the Gulf of Aden and occupied in Neoproterozoic times a key position to constrain the age and the nature of the largely hidden Neoproterozoic rocks of the Arabian plate. Our integrated field, petrographic, geochemical and geochronological study in the Neoproterozoic rocks recognises three main successive events: (a) high-temperature ductile deformation and metamorphism forming probably in a compressive or transpressive regime; (b) mafic to intermediate intrusions as vertical sheets, kilometre-scale gabbro laccoliths, mafic dike swarm and lavas which present mainly a depleted arc signature with some evidences of evolution from an enriched-arc signature; (c) felsic intrusions mainly composed of highly potassic calc–alkaline and pinkish granites dated between 840 and 780 Ma. Relationships between the various petrographic types and U–Pb data suggest that these events occurred during a relatively short time span (80 Ma at max). Earlier high-temperature–low-pressure metamorphism stage as well as geochemical signature of mafic rocks show that development of Cryogenian formations of Socotra were controlled successively by an Andean-arc and a back-arc setting. These features cannot be easily reconciled with those of the Arabian–Nubian shield to the west of Socotra and of the Mozambique Belt to the south. We propose that the Socotra basement was developed at an active margin close to the India block in Cryogenian times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call