Abstract

AbstractThe Middle and Lower Reaches of the Yangtze River metallogenic belt (MLYMB) is one of the most important Fe‐Cu polymetallic belts in China. However, the mechanism and deep geodynamical process for the formation of this belt are still controversial. Here, we obtain the crustal and the uppermost mantle structures using ambient noise data from a dense seismic profile. A low velocity zone is revealed beneath the Moho of MLYMB, interpreted as the source of the deep mineralization materials. In addition, a low velocity layer (LVL) and a high velocity layer (HVL) are observed in the crust of the southern segment of the profile. The LVL is interpreted as a tectonic detachment layer between the upper and the lower crust, and the HVL is interpreted as the aggregation zone for mineralizing melts or crystallized magma chambers. Based on the observed velocity features, we propose a three‐stage model for the formation of ore deposits in MLYMB. Our model suggests that an upwelling of asthenosphere triggered by the delamination of a previously thickened lithosphere leads to the partial melting of upper mantle rocks, which eventually ponders under the Moho. The magma then infiltrates through the ductile lower crust and reaches a depth of ∼7–13 km, forming a minerals‐enriched magma chamber. Minerals‐rich hot fluids originating from the magma chamber continue to move upward along the pre‐existent faults and the minerals finally precipitate in dense veinlets when reaching shallow depths, forming the ore deposits in and around the MLYMB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.