Abstract

Abstract The prevalence of obesity is increasing worldwide. Obese individuals are predisposed to cardio-metabolic disorders. Brown adipose tissue (BAT) is an active metabolic organ abundant with mitochondria, and studies suggest a potential role of BAT in the maintenance of metabolic health in rodents and humans. Metabolic stress causes BAT dysfunction, but the underlying mechanisms are largely unknown. Coagulation factor Xa (FXa) is critically involved in a coagulation cascade, and it is also known to mediate biological effects by the activation of protease-activated receptor (PAR)-signaling. Accumulating evidence shows that PAR1 contributes to tissue remodeling in cardiovascular system. Analyzing deposited microarray data, we found transcripts for coagulation factors including factor VII (F7), factor X (F10), and PAR1 receptor were increased in BAT from obese mice. Here we show a previously unknown role of FXa-PAR signaling in promoting BAT dysfunction and systemic metabolic disorder in a murine dietary obese model. Imposing a high fat diet (HFD) on C57BL/6NCr mice led to a marked increase in tissue factor (TF), coagulation factor VII and FXa in BAT. TF-FVIIa (activated form of FVII)-FXa complex is known to activate PAR1, and we found a significant increase in PAR1 expression in BAT upon metabolic stress. Administration of a FXa inhibitor ameliorated BAT whitening, improved thermogenic response and systemic glucose intolerance upon dietary obesity. Fxa inhibition reduced reactive oxygen species (ROS) level in BAT. In contrast, administration of warfarin did not show any phenotype in BAT. BAT specific TF and PAR1 over-expression model showed significant whitening of this tissue, which was associated with systemic glucose intolerance. We generated BAT specific PAR1 KO mice. BAT-PAR1 KO mice exhibited re-browning of BAT along with reduced ROS level in this tissue. In BAT-PAR1 KO mice, glucose intolerance and thermogenic response under a metabolically stressed condition were ameliorated. In differentiated brown adipocytes, FXa markedly increased mitochondrial ROS and reduced mitochondrial membrane potential. Inhibition of PAR1 ameliorated FXa-induced mitochondrial ROS production and reduction in membrane potential. We also found that plasma FXa level did not increase in obese mice as well as in obese individuals. These results suggest the previously unknown role of coagulation systems in promoting BAT dysfunction, leading to systemic metabolic disorders. Maintenance of BAT homeostasis through the suppression of FXa-PAR1 signaling would become a new therapeutic target for obesity and diabetes. Funding Acknowledgement Type of funding source: None

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call